Enhanced sarcoplasmic reticulum Ca(2+) release following intermittent sprint training.
نویسندگان
چکیده
To evaluate the effect of intermittent sprint training on sarcoplasmic reticulum (SR) function, nine young men performed a 5 wk high-intensity intermittent bicycle training, and six served as controls. SR function was evaluated from resting vastus lateralis muscle biopsies, before and after the training period. Intermittent sprint performance (ten 8-s all-out periods alternating with 32-s recovery) was enhanced 12% (P < 0.01) after training. The 5-wk sprint training induced a significantly higher (P < 0.05) peak rate of AgNO(3)-stimulated Ca(2+) release from 709 (range 560-877; before) to 774 (596-977) arbitrary units Ca(2+). g protein(-1). min(-1) (after). The relative SR density of functional ryanodine receptors (RyR) remained unchanged after training; there was, however, a 48% (P < 0.05) increase in total number of RyR. No significant differences in Ca(2+) uptake rate and Ca(2+)-ATPase capacity were observed following the training, despite that the relative density of Ca(2+)-ATPase isoforms SERCA1 and SERCA2 had increased 41% and 55%, respectively (P < 0.05). These data suggest that high-intensity training induces an enhanced peak SR Ca(2+) release, due to an enhanced total volume of SR, whereas SR Ca(2+) sequestration function is not altered.
منابع مشابه
Enhanced sarcoplasmic reticulum Ca21 release following intermittent sprint training
NIELS ØRTENBLAD,1 PER K. LUNDE,2 KLAUS LEVIN,3 JESPER L. ANDERSEN,4 AND PREBEN K. PEDERSEN1 1Institute of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense University, 5230 Odense M; 3Institute of Clinical Research, Odense University Hospital, 5230 Odense M; 4Copenhagen Muscle Research Centre, Rigshospitalet, DK-2200 Copenhagen N, Denmark; and 2Institute for Exper...
متن کاملSprint training restores normal contractility in postinfarction rat myocytes.
The significance of 6-8 wk of high-intensity sprint training (HIST) on contractile abnormalities of myocytes isolated from rat hearts with prior myocardial infarction (MI) was investigated. Compared with the sedentary (Sed) condition, HIST attenuated myocyte hypertrophy observed post-MI primarily by reducing cell lengths but not cell widths. At high extracellular Ca(2+) concentration (5 mM) and...
متن کاملHow well do muscle biomechanics predict whole-animal locomotor performance? The role of Ca2+ handling.
It is important to determine the enabling mechanisms that underlie locomotor performance to explain the evolutionary patterns and ecological success of animals. Our aim was to determine the extent to which calcium (Ca(2+)) handling dynamics modulate the contractile properties of isolated skeletal muscle, and whether the effects of changing Ca(2+) handling dynamics in skeletal muscle are paralle...
متن کاملDifferences in locomotor performance between individuals: importance of parvalbumin, calcium handling and metabolism.
Locomotor performance is linked to fitness and health of animals and is expected to be under strong selection. However, interindividual variation in locomotor performance is pronounced in many species. It was our aim to investigate the relative importance of energy metabolism and calcium handling in determining sprint and sustained locomotion in the zebrafish (Danio rerio). Sprint and sustained...
متن کاملHypochlorous acid modifies calcium release channel function from skeletal muscle sarcoplasmic reticulum.
We have previously demonstrated that H2O2 at millimolar concentrations induces Ca(2+) release from actively loaded sarcoplasmic reticulum (SR) vesicles and induces biphasic [(3)H]ryanodine binding behavior. Considering that hypochlorous acid (HOCl) is a related free radical and has been demonstrated to be a more effective oxidant of proteins, we evaluated the effects of HOCl on sarcoplasmic ret...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- American journal of physiology. Regulatory, integrative and comparative physiology
دوره 279 1 شماره
صفحات -
تاریخ انتشار 2000